杰网资源 Design By www.escxy.com
一维线性拟合
数据为y=4x+5加上噪音
结果:
import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt from torch.autograd import Variable import torch from torch import nn X = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) Y = 4*X + 5 + torch.rand(X.size()) class LinearRegression(nn.Module): def __init__(self): super(LinearRegression, self).__init__() self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1 def forward(self, X): out = self.linear(X) return out model = LinearRegression() criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) num_epochs = 1000 for epoch in range(num_epochs): inputs = Variable(X) target = Variable(Y) # 向前传播 out = model(inputs) loss = criterion(out, target) # 向后传播 optimizer.zero_grad() # 注意每次迭代都需要清零 loss.backward() optimizer.step() if (epoch + 1) % 20 == 0: print('Epoch[{}/{}], loss:{:.6f}'.format(epoch + 1, num_epochs, loss.item())) model.eval() predict = model(Variable(X)) predict = predict.data.numpy() plt.plot(X.numpy(), Y.numpy(), 'ro', label='Original Data') plt.plot(X.numpy(), predict, label='Fitting Line') plt.show()
多维:
from itertools import count import torch import torch.autograd import torch.nn.functional as F POLY_DEGREE = 3 def make_features(x): """Builds features i.e. a matrix with columns [x, x^2, x^3].""" x = x.unsqueeze(1) return torch.cat([x ** i for i in range(1, POLY_DEGREE+1)], 1) W_target = torch.randn(POLY_DEGREE, 1) b_target = torch.randn(1) def f(x): return x.mm(W_target) + b_target.item() def get_batch(batch_size=32): random = torch.randn(batch_size) x = make_features(random) y = f(x) return x, y # Define model fc = torch.nn.Linear(W_target.size(0), 1) batch_x, batch_y = get_batch() print(batch_x,batch_y) for batch_idx in count(1): # Get data # Reset gradients fc.zero_grad() # Forward pass output = F.smooth_l1_loss(fc(batch_x), batch_y) loss = output.item() # Backward pass output.backward() # Apply gradients for param in fc.parameters(): param.data.add_(-0.1 * param.grad.data) # Stop criterion if loss < 1e-3: break def poly_desc(W, b): """Creates a string description of a polynomial.""" result = 'y = ' for i, w in enumerate(W): result += '{:+.2f} x^{} '.format(w, len(W) - i) result += '{:+.2f}'.format(b[0]) return result print('Loss: {:.6f} after {} batches'.format(loss, batch_idx)) print('==> Learned function:\t' + poly_desc(fc.weight.view(-1), fc.bias)) print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))
以上这篇pytorch实现线性拟合方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pytorch,线性,拟合
杰网资源 Design By www.escxy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
杰网资源 Design By www.escxy.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。