前言
还在用keys命令模糊匹配删除数据吗?这就是一颗随时爆炸的炸弹!
Redis中没有批量删除特定前缀key的指令,但我们往往需要根据前缀来删除,那么究竟该怎么做呢?可能你一通搜索后会得到下边的答案
redis-cli --raw keys "ops-coffee-*" | xargs redis-cli del
直接在linux下通过redis的keys命令匹配到所有的key,然后调用系统命令xargs来删除,看似非常完美,实则风险巨大
因为Redis的单线程服务模式,命令keys会阻塞正常的业务请求,如果你一次keys匹配的数量过多或者在del的时候遇到大key,都会直接导致业务的不可用,甚至造成redis宕机的风险
所以我们在生产环境中应当避免使用上边的方法,那有什么优雅的方法来解决呢?SCAN!
SCAN介绍及使用
Redis从2.8版本开始支持scan命令,SCAN命令的基本用法如下:
SCAN cursor [MATCH pattern] [COUNT count]
cursor: 游标,SCAN命令是一个基于游标的迭代器,SCAN命令每次被调用之后,都会向用户返回一个新的游标,用户在下次迭代时需要使用这个新游标作为SCAN命令的游标参数,以此来延续之前的迭代过程,直到服务器向用户返回值为0的游标时,一次完整的遍历过程就结束了
MATCH: 匹配规则,例如遍历以ops-coffee-开头的所有key可以写成ops-coffee-*,中间包含-coffee-的可以写成*-coffee-*
COUNT: COUNT选项的作用就是让用户告知迭代命令,在每次迭代中应该从数据集里返回多少元素,COUNT只是对增量式迭代命令的一种提示,并不代表真正返回的数量,例如你COUNT设置为2有可能会返回3个元素,但返回的元素数据会与COUNT设置的正相关,COUNT的默认值是10
以下是一个SCAN命令的迭代过程示例:
127.0.0.1:6379> scan 0 MATCH ops-coffee-* 1) "38" 2) 1) "ops-coffee-25" 2) "ops-coffee-19" 3) "ops-coffee-29" 4) "ops-coffee-10" 5) "ops-coffee-23" 6) "ops-coffee-5" 7) "ops-coffee-14" 8) "ops-coffee-16" 9) "ops-coffee-11" 10) "ops-coffee-15" 11) "ops-coffee-7" 12) "ops-coffee-1" 127.0.0.1:6379> scan 38 MATCH ops-coffee-* COUNT 1000 1) "0" 2) 1) "ops-coffee-13" 2) "ops-coffee-9" 3) "ops-coffee-21" 4) "ops-coffee-6" 5) "ops-coffee-30" 6) "ops-coffee-20" 7) "ops-coffee-2" 8) "ops-coffee-12" 9) "ops-coffee-28" 10) "ops-coffee-3" 11) "ops-coffee-26" 12) "ops-coffee-4" 13) "ops-coffee-31" 14) "ops-coffee-8" 15) "ops-coffee-22" 16) "ops-coffee-27" 17) "ops-coffee-18" 18) "ops-coffee-24" 19) "ops-coffee-17"
SCAN命令返回的是一个包含两个元素的数组,第一个数组元素是用于进行下一次迭代的新游标,而第二个数组元素则是一个数组,这个数组中包含了所有被迭代的元素
上面这个例子的意思是扫描所有前缀为ops-coffee-的key
第一次迭代使用0作为游标,表示开始一次新的迭代,同时使用了MATCH匹配前缀为ops-coffee-的key,返回了游标值38以及遍历到的数据
第二次迭代使用的是第一次迭代时返回的游标,也即是命令回复第一个元素的值38,同时通过将COUNT选项的参数设置为1000,强制命令为本次迭代扫描更多元素
在第二次调用SCAN命令时,命令返回了游标0,这表示迭代已经结束,整个数据集已经被完整遍历过了
KEYS命令的时间复杂度为O(n),而SCAN命令会将遍历操作分解成m次时间复杂度为O(1)的操作来执行,从而解决使用keys命令遍历大量数据而导致服务器阻塞的情况,使用下边的指令可以达到优雅删除的目的:
redis-cli --scan --pattern "ops-coffee-*" | xargs -L 2000 redis-cli del
其中xargs -L指令表示xargs一次读取的行数,也就是每次删除的key数量,一次读取太多xargs会报错
其他几种数据结构的优雅删除
类似的SCAN命令,对于Redis不同的数据类型还有另外几个SSCAN、HSCAN和ZSCAN,使用方法类似:
> sscan ops-coffee 0 MATCH v1* 1) "7" 2) 1) "v15" 2) "v13" 3) "v12" 4) "v10" 5) "v14" 6) "v1"
与SCAN命令不同的是这几个命令需要多加一个key的参数,例如上边的ops-coffee
对于一个大的set key,借助sscan使用下边的代码可以实现优雅的批量删除:
import redis def del_big_set_key(key_name): r = redis.StrictRedis(host='localhost', port=6379) # count表示每次删除的元素数量,这里每次删除300元素 for key in r.sscan_iter(name=key_name, count=300): r.srem(key_name, key) del_big_set_key('ops-coffee')
对于一个大的hash key,则可借助hscan使用下边的代码实现优雅的删除:
import redis def del_big_hash_key(key_name): r = redis.StrictRedis(host='localhost', port=6379) # hscan_iter获取出来的结果是个元祖,下边hdel删除用key[0]取到key for key in r.hscan_iter(name=key_name, count=300): r.hdel(key_name, key[0]) del_big_hash_key('ops-coffee')
对于大的有序集合的删除就比较简单了,直接根据zremrangebyrank排行范围删除
import redis def del_big_sort_key(key_name): r = redis.StrictRedis(host='localhost', port=6379) while r.zcard(key_name) > 0: # 判断集合中是否有元素,如有有则删除排行0-99的元素 r.zremrangebyrank(key_name, 0, 99) del_big_sort_key('ops-coffee')
big list大列表的删除可以参考上边这个方法,通过llen判断数量,然后ltrim移除范围内的元素,这里不赘述
至此对于Redis的五中数据结构大key的优雅删除就全部实现了,生产环境择优使用~
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?